A pre-loaded example dataset in R

Main page: https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/crimtab

head(crimtab)
##     142.24 144.78 147.32 149.86 152.4 154.94 157.48 160.02 162.56 165.1 167.64
## 9.4      0      0      0      0     0      0      0      0      0     0      0
## 9.5      0      0      0      0     0      1      0      0      0     0      0
## 9.6      0      0      0      0     0      0      0      0      0     0      0
## 9.7      0      0      0      0     0      0      0      0      0     0      0
## 9.8      0      0      0      0     0      0      1      0      0     0      0
## 9.9      0      0      1      0     1      0      1      0      0     0      0
##     170.18 172.72 175.26 177.8 180.34 182.88 185.42 187.96 190.5 193.04 195.58
## 9.4      0      0      0     0      0      0      0      0     0      0      0
## 9.5      0      0      0     0      0      0      0      0     0      0      0
## 9.6      0      0      0     0      0      0      0      0     0      0      0
## 9.7      0      0      0     0      0      0      0      0     0      0      0
## 9.8      0      0      0     0      0      0      0      0     0      0      0
## 9.9      0      0      0     0      0      0      0      0     0      0      0
require(stats)
dim(crimtab)
## [1] 42 22
utils::str(crimtab)
##  'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:42] "9.4" "9.5" "9.6" "9.7" ...
##   ..$ : chr [1:22] "142.24" "144.78" "147.32" "149.86" ...
## for nicer printing:
local({cT <- crimtab
       colnames(cT) <- substring(colnames(cT), 2, 3)
       print(cT, zero.print = " ")
})
##      42 44 47 49 52 54 57 60 62 65 67 70 72 75 77 80 82 85 87 90 93 95
## 9.4                                                                   
## 9.5                  1                                                
## 9.6                                                                   
## 9.7                                                                   
## 9.8                     1                                             
## 9.9         1     1     1                                             
## 10    1        1  2     2        1                                    
## 10.1           1  3  1     1  1                                       
## 10.2        2  2  2  1     2     1                                    
## 10.3     1  1  3  2  2  3  5                                          
## 10.4        1  1  2  3  3  4  3  3                                    
## 10.5           1  3  7  6  4  3  1  3  1     1                        
## 10.6           1  4  5  9 14  6  3  1        1                        
## 10.7        1  2  4  9 14 16 15  7  3  1  2                           
## 10.8           2  5  6 14 27 10  7  1  2  1                           
## 10.9              2  6 14 24 27 14 10  4  1                           
## 11             2  6 12 15 31 37 27 17 10  6                           
## 11.1           3  3 12 22 26 24 26 24  7  4  1                        
## 11.2           3  2  7 21 30 38 29 27 20  4  1                       1
## 11.3           1     5 10 24 26 39 26 24  7  2                        
## 11.4              3  4  9 29 56 58 26 22 10 11                        
## 11.5                 5 11 17 33 57 38 34 25 11  2                     
## 11.6              2  1  4 13 37 39 48 38 27 12  2  2     1            
## 11.7                 2  9 17 30 37 48 45 24  9  9  2                  
## 11.8              1     2 11 15 35 41 34 29 10  5  1                  
## 11.9              1  1  2 12 10 27 32 35 19 10  9  3  1               
## 12                      1  4  8 19 42 39 22 16  8  2  2               
## 12.1                       2  4 13 22 28 15 27 10  4  1               
## 12.2                    1  2  5  6 23 17 16 11  8  1  1               
## 12.3                          4  8 10 13 20 23  6  5                  
## 12.4                    1  1  1  2  7 12  4  7  7  1        1         
## 12.5                       1     1  3 12 11  8  6  8     2            
## 12.6                             1     3  5  7  8  6  3  1  1         
## 12.7                             1  1  7  5  5  8  2  2               
## 12.8                                1  2  3  1  8  5  3  1  1         
## 12.9                                   1  2  2     1  1               
## 13                                  3     1     1     2  1            
## 13.1                                   1  1                           
## 13.2                                1  1     1     3                  
## 13.3                                                  1     1         
## 13.4                                                                  
## 13.5                                                     1
## Repeat Student's experiment:

# 1) Reconstitute 3000 raw data for heights in inches and rounded to
#    nearest integer as in Student's paper:

(heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
##  [1] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))

# 2) shuffle the data:

set.seed(1)
d.hei <- d.hei[sample(1:3000), , drop = FALSE]

# 3) Make 750 samples each of size 4:

d.hei$sample <- as.factor(rep(1:750, each = 4))

# 4) Compute the means and standard deviations (n) for the 750 samples:

h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
h.sd   <- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)

# 5) Compute the difference between the mean of each sample and
#    the mean of the population and then divide by the
#    standard deviation of the sample:

zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd

# 6) Replace infinite values by +/- 6 as in Student's paper:

zobs[infZ <- is.infinite(zobs)] # none of them 
## named numeric(0)
zobs[infZ] <- 6 * sign(zobs[infZ])

# 7) Plot the distribution:

require(grDevices); require(graphics)
hist(x = zobs, probability = TRUE, xlab = "Student's z",
     col = grey(0.8), border = grey(0.5),
     main = "Distribution of Student's z score  for 'crimtab' data")